- 7. Yu. M. Matsevityi, Electrical Modeling of Nonlinear Problems in Technical Thermophysics [in Russian], Naukova Dumka, Kiev (1977).
- 8. V. Cappelini, A. Constantinidis, and P. Emiliani, Digital Filters and Their Application [Russian translation], Energoatomizdat, Moscow (1983).
- 9. V. L. Pokhoriler, "Using the solution of an inverse heat-conduction problem for calculating the heat-exchange coefficient from the experimentally measured temperatures of the interior points of a body," Inzh.-Fiz. Zh., 23, No. 5, 879-883 (1972).

DETERMINING THE MEAN-SQUARE ERROR AND DISCRETIZATION STEP OF THE INITIAL DATA OF AN INVERSE PROBLEM IN A SINGLE REALIZATION

A. I. Maiorov and L. A. Rudometkin

UDC 536.24.02

A method is developed allowing the approximate values of the mean square error and optimal discretization step of the initial data to be found from a single realization of a random process.

In solving inverse problems by means of information on the mean square error σ of the initial data, the accuracy of the results obtained depends on the accuracy in determining σ . The economy and accuracy of computer calculations depends largely on the number of discretization points of the initial inverse-problem data.

To determine the optimal discretization step H_{opt} of a random process $T(\tau)$ consisting of a useful signal and an arbitrarily distributed perturbation, it is assumed that the greatest frequency $T(\tau)$ is finite and $T(\tau)$ is specified by the division T_i , $i = 1, \ldots, N$, in sufficient detail (no less than three points must cover each halfperiod of the characteristic variations). Using a cubic spline $S_{\Delta}(\tau, T_i)$ interpolating the values of T_i , the characteristic frequency f_{max} of high-frequency oscillations of the function $T(\tau)$ with respect to the number of points N* of sign change of the second derivative $S'_{\Delta}(\tau, T_i)$ on the given segment [0, τ_{max}] is found

$$f_{\max} = \frac{N^*}{2\tau_{\max}}.$$

In accordance with the Kotel'nikov and Zheleznov discretization theorem — see [1], for example — the division $S_{\Delta}(\tau, T_{1})$ is made with a step equal to half the characteristic period of the high-frequency oscillations, that is, with

$$H_{\rm opt} = \frac{1}{2f_{\rm max}}.$$

This step is very close to the maximum possible value at which all the information on the useful signal and the error of the initial data $T(\tau)$ is retained. To determine the mean square error σ of the initial data $T(\tau)$, the squares of the deviations of $S_{\Delta}(\tau, T_i)$ at each internal point of the chosen optimal grid division from the straight lines passing through two adjacent corners are averaged. This leads to the value

$$\delta^{2} = \frac{1}{N^{*} - 1} \sum_{i=2}^{N^{*}} \left[T_{i}^{*} - \frac{1}{2} \left(T_{i+1}^{*} - T_{i-1}^{*} \right) \right]^{2},$$

where T_1^* , $i = 1, ..., N^*$, are the corner values of the optimal grid division. To determine the difference of δ from σ , the error of the initial data is specified using a harmonic function of the form

```
\varepsilon(\tau) = a \sin(2\pi f_{\max}\tau).
```

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 51, No. 1, pp. 150-152, July, 1986. Original article submitted May 17, 1985.

Fig. 1. Ratio of the results obtained for the mean square error of the initial data and the accurate values, as a function of the size of the statistical sample employed.

In this case, δ^2 is equal to the mathematical expectation of the function $[a + \varepsilon(\tau)]^2$, and σ^2 is the dispersion of the function $\varepsilon(\tau)$ on the segments $[0, 1/f_{max}]$. Hence $\sigma^2 = \delta^2/3$. This relation is used to estimate the mean square error of the initial data $T(\tau)$, under the assumption that the basic contribution to the error comes from high-frequency oscillations.

The results of verifying this procedure for determining σ on a model example are shown in Fig. 1. The value of σ , referred to the known accurate value of the mean square error σ_T , is shown as a function of the size N of the statistical sample describing the given random process. The initial function chosen is

$$T(\tau) = \sin \tau, \ 0 \leqslant \tau \leqslant 3\pi,$$

with the node values T_i , i = 1, ..., N, which introduce a perturbation distributed according to a normal law. The mean square error σ_T of these perturbations is 1% of the range of variation of T. As shown by numerical experiment, the size of the statistical sample has the greatest influence on the accuracy of determination of σ at small N. Therefore, to increase the accuracy of a calculation when $N \leq 30$, initial grid values of T_i must be used instead of T_i^* , since $N \ge N^*$.

NOTATION

T, function of the initial data; S_{Δ} , cubic spline; H_{opt} , optimal discretization step; f_{max} , characteristic frequency of high-frequency oscillations; δ , characteristic magnitude of the error of the initial data; σ , mean square error; σ_{T} , accurate value of mean square error; ε , model error function; τ , independent variable; τ_{max} , maximum value of independent variable; N, number of points of initial grid division; N*, number of points of optimal grid division; i, number of point.

LITERATURE CITED

1. F. E. Temnikov, V. A. Afonin, and V. I. Dmitriev, Theoretical Principles of Information Technology [in Russian], Energiya, Moscow (1979).